Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Respirology ; 27(10): 844-853, 2022 10.
Article in English | MEDLINE | ID: covidwho-1891676

ABSTRACT

BACKGROUND AND OBJECTIVE: Single-study evidence of separate and combined effectiveness of influenza and pneumococcal vaccination in patients with chronic obstructive pulmonary disease (COPD) is limited. To fill this gap, we studied the effectiveness of trivalent seasonal influenza vaccine (TIV) and 23-valent pneumococcal polysaccharide vaccine (PPSV23), separately and together, at preventing adverse COPD outcomes. METHODS: Our study used a self-controlled, before-and-after cohort design to assess the effectiveness of TIV and PPSV23 in COPD patients. Patients were recruited from hospitals in Tangshan City, Hebei Province, China. Subjects self-selected into one of the three vaccination schedules: TIV group, PPSV23 group and TIV&PPSV23 group. We used a physician-completed, medical record-verified questionnaire to obtain data on acute exacerbations of COPD (AECOPD), pneumonia and related hospitalization. Vaccine effectiveness was determined by comparing COPD outcomes before and after vaccination, controlling for potential confounding using Cox regression. RESULTS: We recruited 474 COPD patients, of whom 109 received TIV, 69 received PPSV23 and 296 received TIV and PPSV23. Overall effectiveness for preventing AECOPD, pneumonia and related hospitalization were respectively 70%, 59% and 58% in the TIV group; 54%, 53% and 46% in the PPSV23 group; and 72%, 73% and 69% in the TIV&PPSV23 group. The vaccine effectiveness without COVID-19 non-pharmaceutical intervention period were 84%, 77% and 88% in the TIV group; 63%, 74% and 66% in the PPSV23 group; and 82%, 83% and 91% in the TIV&PPSV23 group. CONCLUSION: Influenza vaccination and PPSV23 vaccination, separately and together, can effectively reduce the risk of AECOPD, pneumonia and related hospitalization. Effectiveness for preventing AECOPD was the greatest.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Pneumococcal Infections , Pneumonia, Pneumococcal , Pneumonia , Pulmonary Disease, Chronic Obstructive , Humans , Influenza Vaccines/therapeutic use , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pneumococcal Infections/chemically induced , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/therapeutic use , Pneumonia/chemically induced , Pneumonia, Pneumococcal/epidemiology , Pneumonia, Pneumococcal/prevention & control , Pulmonary Disease, Chronic Obstructive/complications
2.
Med Image Anal ; 67: 101824, 2021 01.
Article in English | MEDLINE | ID: covidwho-888729

ABSTRACT

With the rapidly worldwide spread of Coronavirus disease (COVID-19), it is of great importance to conduct early diagnosis of COVID-19 and predict the conversion time that patients possibly convert to the severe stage, for designing effective treatment plans and reducing the clinicians' workloads. In this study, we propose a joint classification and regression method to determine whether the patient would develop severe symptoms in the later time formulated as a classification task, and if yes, the conversion time will be predicted formulated as a classification task. To do this, the proposed method takes into account 1) the weight for each sample to reduce the outliers' influence and explore the problem of imbalance classification, and 2) the weight for each feature via a sparsity regularization term to remove the redundant features of the high-dimensional data and learn the shared information across two tasks, i.e., the classification and the regression. To our knowledge, this study is the first work to jointly predict the disease progression and the conversion time, which could help clinicians to deal with the potential severe cases in time or even save the patients' lives. Experimental analysis was conducted on a real data set from two hospitals with 408 chest computed tomography (CT) scans. Results show that our method achieves the best classification (e.g., 85.91% of accuracy) and regression (e.g., 0.462 of the correlation coefficient) performance, compared to all comparison methods. Moreover, our proposed method yields 76.97% of accuracy for predicting the severe cases, 0.524 of the correlation coefficient, and 0.55 days difference for the conversion time.


Subject(s)
COVID-19/classification , COVID-19/diagnostic imaging , Pneumonia, Viral/classification , Pneumonia, Viral/diagnostic imaging , Tomography, X-Ray Computed/methods , Disease Progression , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Radiographic Image Interpretation, Computer-Assisted , Radiography, Thoracic , SARS-CoV-2 , Severity of Illness Index , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL